Glowing Products for Science™ www.biotium.com

Product Information

ExoBrite™ CTB EV Staining Kits

Catalog Number: See Table 1 on page 2.

Kit Contents

Component	Full Size 500 labelings	Trial Size 100 labelings
ExoBrite™ CTB EV Stain	Component A 5 vials	Component A 1 vial
ExoBrite™ Reconstitution Solution	99858 1 mL	99858 1 mL

Storage and Handling

Store the kit at -20°C upon arrival and protect from light. Product is stable for at least 6 months from date of receipt when stored as recommended. ExoBrite™ Reconstitution Solution may be stored at either 4°C or -20°C.

Reconstitution

To prepare 500X ExoBrite™ CTB EV Stain solution, dissolve one vial of Component A in 100 uL of ExoBrite™ Reconstitution Solution. Pipet gently up and down to mix. The 500X stain solution can be stored protected from light for up to 6 months at 4°C.

Note: ExoBrite™ Reconstitution Solution contains 0.05% sodium azide.

Spectral Properties

See Table 1.

Product Description

Extracellular vesicles (EVs), including exosomes, are lipid-bound vesicles that are released from cells. EVs display specific surface proteins and can carry nucleic acids and other cargo, allowing them to transfer biological information between cells in different parts of the body. Therefore EVs are increasingly studied for their potential use in drug delivery and medical diagnostic applications. Biotium developed ExoBriteTM CTB EV Stains for fluorescent labeling and detection of EVs and exosomes by flow cytometry. Other potential applications include fluorescence microscopy and other fluorescence detection platforms.

ExoBrite™ CTB EV Stains are unique fluorescent dyes conjugated to cholera toxin subunit B (CTB), which binds to GM1 gangliosides that are commonly found on the surface of mammalian lipid rafts and EVs. The stains were designed to overcome some of the challenges of EV detection, particularly in flow cytometry. Some dyes used to stain EVs can form aggregates of a similar size as exosomes or EVs, thus confounding analysis. ExoBrite™ CTB EV Stains, however, show little to no aggregation in flow cytometry, allowing EVs to be identified with bright and specific staining. Unlike hydrophobic membrane dyes, ExoBrite™ CTB EV Stains do not bind non-specifically to polystyrene beads, meaning that they can be used to stain bead-bound EVs.

EVs are often labeled with fluorescent antibodies targeting one or more of the tetraspanin proteins CD9, CD63, and CD81. ExoBrite™ CTB staining can be combined with antibody staining, for multi-parameter analysis (see Staining Protocol). Biotium offers a selection of fluorescent ExoBrite™ Flow Antibodies against CD9, CD63, and CD81 that are optimized for detection of free or bead-bound exosomes by flow cytometry (see Related Products).

Considerations for Detecting EVs by Flow Cytometry

EVs are extremely small vesicles (~30-150 nm in diameter), a size which is near or below the size detection limit of some flow cytometers. We recommend determining the size detection limit of your instrument by running sizing beads (for example, ranging from 0.02-2 um) in SSC before attempting to detect purified EVs. We also recommend running sizing beads before each EV detection experiment and using them to set the SSC threshold. EVs that are bound to affinity beads are large enough to detect on any instrument.

Revised: September 7, 2023

- Consider using a 405 nm laser for the SSC instead of a 488 nm laser for improved sensitivity for small particles.
- Use a low flow rate to keep the event rate and abort rate low. This will result in reduced instrument noise. Dilute the stained samples in filtered PBS if necessary.
- For best results, buffers used for suspending and staining EVs should be filtered through a 0.2 um filter to remove particulates.

Considerations for Staining With ExoBrite™ CTB EV Stains

The following are general considerations for using ExoBrite™ to stain exosomes or EVs. See Experimental Protocols for step-by-step instructions for use.

- ExoBrite™ CTB EV Stains have been validated in flow cytometry on the CytoFLEX LX from Beckman Coulter. Results on other instruments may vary based on the instrument's size detection limit and other parameters.
- Individual exosomes and EVs are too small to be imaged by conventional fluorescence or confocal microscopy, but clusters of EVs taken up by cells may be visualized. ExoBrite™ CTB EV Stains have not been validated for labeling EVs for cellular uptake. It may be necessary to remove free stain (by ultrafiltration, for example) before attempting to apply ExoBrite™ CTBlabeled EVs to cells.
- EVs can be imaged by super-resolution microscopy. The ExoBrite[™] 410/450 fluorophore is compatible with SIM and STED. The ExoBrite[™] 490/515 fluorophore is compatible with STED, STORM, and TIRF. The ExoBrite[™] 560/585 fluorophore is compatible with SIM, STED, and STORM. For imaging EVs by STORM, we also recommend our ExoBrite[™] STORM CTB EV Staining Kits (see Related Products).
- ExoBrite™ CTB EV Stains are validated for staining EVs from various sources but may not work on EVs from other sources. See Table 2 on page 2 or visit the <u>product page</u> for staining performance for EVs from a variety of sources that were confirmed by Biotium or customer data.
- ExoBrite™ CTB EV Stains have been validated for staining EVs isolated using several different methods, including PEG precipitation, size exclusion chromatography, and affinity bead isolation. Staining results may vary depending on the EV isolation method used.
- While we have found that staining with 1X ExoBrite™ CTB EV Stain gives a
 bright signal and low background under our typical staining conditions, we
 have also seen excellent results at concentrations between 1X and 100X.
 The dye concentration may require optimization for different samples and
 detection systems.
- ExoBrite™ CTB EV Stains can be used for co-staining with fluorescently labeled primary antibodies. Co-staining can be performed concurrently or sequentially (see "Antibody Co-Staining of Purified Exosomes" under Experimental Protocols).

Table 1. ExoBrite™ CTB EV Staining Kits

Cat. No.	Size	Product Name	Ex/Em	Laser Line(s) (nm)	Detection Channel
30111	500 labeling reactions	FunDrita IN 440/450 OTD EV Chaining Vit	416/452 nm	405	Pacific Blue™
30111-T	100 labeling reactions	ExoBrite™ 410/450 CTB EV Staining Kit			
30112	500 labeling reactions	ExoBrite™ 490/515 CTB EV Staining Kit	490/516 nm	488	FITC
30112-T	100 labeling reactions	EXOBITE *** 490/313 CTB EV Stallling Kit			
30113	500 labeling reactions	ExoBrite™ 560/585 CTB EV Staining Kit	562/584 nm	532 or 561	PE
30113-T	100 labeling reactions	EXOBILE 300/303 CTB EV Staining Kit			
30114	500 labeling reactions	FugDrite IM 640/660 CTD FV Staining Vit	642/663 nm	633-640	APC
30114-T	100 labeling reactions	ExoBrite™ 640/660 CTB EV Staining Kit			

Table 2. Validated EV Sources for ExoBrite™ CTB EV Stains

EV Source	Biotium Data	Customer Reported
A549 cells	High	
CHO cells	Low	
hASC (human adipose stem cells)		Low
HeLa cells	Low	
HUVEC (human umbilical vein endothelial cells)		Low
J774 cells	High	
Jurkat cells	High	
MCF-7 cells	High	
Plasma		High
Raji cells	High	
Skeletal myoblasts		High
U2OS cells	Low	
U937 cells	Low	

Value of "High" or "Low" indicates relative coverage of EVs based on Biotium's internal data or customer reported data.

Experimental Protocols

Note: Before beginning, please read "Considerations for Staining EVs with ExoBrite™ CTB EV Stains" on previous page.

Staining of purified EVs

This protocol was developed for staining purified EVs with ExoBrite™ CTB EV Stains for detection by flow cytometry.

- 1. Isolate or purify EVs or exosomes using the procedure of your choice.
- 2. Aliquot 50 uL of EVs into FACS tubes or microcentrifuge tubes.
- Prepare 1X ExoBrite™ staining solution by diluting the 500X stock solution 1:500 in 1X PBS (e.g., add 2 uL ExoBrite™ stain to 1 mL PBS).

Note: The concentration of ExoBrite[™] stain can be optimized by the user; we find that concentrations ranging from 1X to 100X give good signal.

- In addition to the ExoBrite[™]-stained EV samples, it is helpful to include the following controls (the buffer should be an appropriate negative control for the EVs, such as a mock purification or the buffer used to suspend the EVs):
 - a. Buffer alone (no EVs, no stain)
 - b. Buffer plus ExoBrite™
 - c. EVs alone (no stain)
- Add 450 uL of 1X ExoBrite[™] staining solution to each tube containing 50 uL sample. Remember to also add the staining solution to the "buffer plus ExoBrite[™]" control.
- 6. Incubate at room temperature for 30 minutes, protected from light.
- Run the samples on a flow cytometer. For tips for flow cytometry detection
 of purified EVs read "Considerations for Detecting EVs by Flow Cytometry"
 on page 1.

Antibody co-staining of purified EVs

This protocol was developed for staining purified EVs with both ExoBrite™ CTB EV Stains and fluorescent antibodies, and detecting them by flow cytometry.

Note: Use labeled primary antibodies at the manufacturer's recommended concentration, or try staining in the range of 0.1-5 ug/mL. Either co-incubation or sequential incubations can be performed as described below.

 Follow steps 1-3 in the "Staining Purified EVs" protocol. In addition to the antibody and ExoBrite™ co-stained EV samples, it is helpful to include the following controls (if using multiple antibodies, include "buffer plus antibody" and single-stain controls for each antibody).

Buffer controls

- a. Buffer alone (no EVs, no stain)
- b. Buffer plus ExoBrite™
- c. Buffer plus antibody

EV controls

- a. Unstained EVs
- b. Single-stain ExoBrite™
- c. Single-stain antibody
- Choose whether to co-stain by co-incubation (proceed to step 3) or sequential incubation (proceed to step 4).
- 3. Co-incubation of antibodies and ExoBrite™:
 - a. Add 450 uL of 1X ExoBrite™ staining solution to each tube containing 50 uL of EVs. Remember to also add the staining solution to the "buffer plus ExoBrite™" control and the ExoBrite™ single-stain control tubes.
 - b. Add fluorescent antibody conjugate to the samples at the desired concentration. For example, to the 500 uL staining reaction, add 0.5 ug antibody for 1 ug/mL. Remember to also add the antibody to the "buffer plus antibody" control and the antibody single-stain control tubes.
 - c. Continue to steps 6-7 in the "Staining Purified EVs" protocol.
- Sequential incubation of antibodies and ExoBrite™:
 - a. Add fluorescent antibody conjugate to the samples at the desired concentration. For example, to the 50 uL EV sample, add 0.05 ug antibody for 1 ug/mL. Remember to also add the antibody to the "buffer plus antibody" control and the antibody single-stain control tubes.
 - b. Incubate at room temperature for 30 minutes, protected from light.
 - c. Add 450 uL of 1X ExoBrite™ staining solution to each sample tube. Remember to also add the staining solution to the "buffer plus ExoBrite™" control and the ExoBrite™ single-stain control tubes.
 - d. Continue to steps 6-7 in the "Staining Purified EVs" protocol.

Staining bead-bound EVs

This protocol was developed for EVs bound to magnetic antibody capture beads, stained with ExoBrite™ CTB EV Stains, and detected by flow cytometry.

- Prepare EVs bound to the magnetic capture beads of your choice, according to the manufacturer's recommended procedure.
- 2. Prepare the following control tubes:
 - a. Beads alone (no EVs or stain)
 - b. Beads plus ExoBrite™ (no EVs)

- Prepare 10X ExoBrite™ staining solution by diluting the 500X stock solution 1:50 in 1X PBS (e.g., add 2 uL ExoBrite™ stain to 100 uL PBS).
- Place the tubes with beads on a magnet for 1 minute, remove and discard the supernatant.
- Remove the tubes with beads from the magnet and suspend in 50 uL of 10X ExoBrite™ staining solution. Remember to also add the staining solution to the "beads plus ExoBrite™" control.
- 6. Incubate at room temperature for 30 minutes, protected from light.
- Place the tubes on a magnet for 1 minute, remove and discard the supernatant.
- Remove the beads from the magnet, add 100 uL of sterile-filtered PBS and gently pipet up and down to resuspend.
- Place the tubes on a magnet for 1 minute, remove and discard the supernatant.
- Remove the tubes from the magnet, add 500 uL of sterile-filtered PBS and gently pipet up and down to resuspend.
- 11. Run the samples on a flow cytometer.

Related Products

Cat. No.	Product
30119- 30122	ExoBrite™ Annexin EV Staining Kits
30123- 30126	ExoBrite™ WGA EV Staining Kits
30115- 30118	ExoBrite™ STORM CTB EV Staining Kits
P003-410	ExoBrite™ 410/450 CD9 Flow Antibody
P003-490	ExoBrite™ 490/515 CD9 Flow Antibody
P003-560	ExoBrite™ 560/585 CD9 Flow Antibody
P003-RPE	ExoBrite™ R-PE CD9 Flow Antibody
P004-410	ExoBrite™ 410/450 CD63 Flow Antibody
P004-490	ExoBrite™ 490/515 CD63 Flow Antibody
P004-560	ExoBrite™ 560/585 CD63 Flow Antibody
P004-RPE	ExoBrite™ R-PE CD63 Flow Antibody
P005-410	ExoBrite™ 410/450 CD81 Flow Antibody
P005-490	ExoBrite™ 490/515 CD81 Flow Antibody
P005-560	ExoBrite™ 560/585 CD81 Flow Antibody
P005-RPE	ExoBrite™ R-PE CD81 Flow Antibody
P008-410	ExoBrite™ 410/450 IgG1 Isotype Control Flow Antibody
P008-490	ExoBrite™ 490/515 IgG1 Isotype Control Flow Antibody
P008-560	ExoBrite™ 560/585 IgG1 Isotype Control Flow Antibody
P008-RPE	ExoBrite™ R-PE IgG1 Isotype Control Flow Antibody
P003-680	ExoBrite™ 680/700 CD9 Western Antibody
P003-770	ExoBrite™ 770/800 CD9 Western Antibody
P004-680	ExoBrite™ 680/700 CD63 Western Antibody
P004-770	ExoBrite™ 770/800 CD63 Western Antibody
P006-680	ExoBrite™ 680/700 CD81 Western Antibody
P006-770	ExoBrite™ 770/800 CD81 Western Antibody
P007-770	ExoBrite™ 770/800 Calnexin Western Antibody

Please visit our website at www.biotium.com for information on our life science research products, including fluorescent CF® Dye antibody conjugates and reactive dyes, apoptosis reagents, fluorescent probes, and kits for cell biology research.

Pacific Blue is a trademark of Thermo Fisher Scientific.

Materials from Biotium are sold for research use only, and are not intended for food, drug, household, or cosmetic use.